在自動(dòng)駕駛、工業(yè)控制等場(chǎng)景,性能不足的代價(jià)可能是災(zāi)難性的。例如:自動(dòng)駕駛:車(chē)輛需在10毫秒內(nèi)完成路況感知與決策,云端處理延遲達(dá)200毫秒以上,根本無(wú)法滿(mǎn)足需求。工業(yè)質(zhì)檢:某電子廠采用云端AI質(zhì)檢時(shí),因網(wǎng)絡(luò)延遲導(dǎo)致缺陷產(chǎn)品漏檢率高達(dá)15%,改用邊緣計(jì)算后漏檢率降至0.3%。智慧醫(yī)療:遠(yuǎn)程手術(shù)中,100毫秒的延遲就可能造成手術(shù)器械操作偏差,邊緣計(jì)算將延遲壓縮至10毫秒以?xún)?nèi),保障了手術(shù)精度?!靶阅苁沁吘売?jì)算的立身之本,但成本控制決定其能否規(guī)模化落地?!北堵?lián)德CTO李明指出。倍聯(lián)德方案:四維驅(qū)動(dòng)成本與性能的黃金平衡作為邊緣計(jì)算領(lǐng)域的先進(jìn)企業(yè),倍聯(lián)德通過(guò)技術(shù)創(chuàng)新與生態(tài)協(xié)同,構(gòu)建了“硬件優(yōu)化、軟件智能、網(wǎng)...
邊緣計(jì)算資源有限,攻擊者利用僵尸網(wǎng)絡(luò)發(fā)起低頻高并發(fā)攻擊,可輕易耗盡邊緣節(jié)點(diǎn)算力。2024年某智能電網(wǎng)試點(diǎn)項(xiàng)目中,攻擊者通過(guò)偽造海量電力負(fù)荷數(shù)據(jù)請(qǐng)求,導(dǎo)致區(qū)域邊緣控制中心癱瘓2小時(shí),影響10萬(wàn)戶(hù)供電。更隱蔽的攻擊方式是針對(duì)邊緣AI模型的“數(shù)據(jù)投毒”,通過(guò)篡改訓(xùn)練數(shù)據(jù)使模型誤判,某自動(dòng)駕駛測(cè)試場(chǎng)曾因此發(fā)生碰撞事故。邊緣設(shè)備部署環(huán)境復(fù)雜,從工廠車(chē)間到野外基站,物理防護(hù)措施薄弱。某油田的邊緣數(shù)據(jù)采集終端因未安裝防拆報(bào)警裝置,被不法分子直接拔除硬盤(pán),導(dǎo)致地質(zhì)勘探數(shù)據(jù)長(zhǎng)久丟失。供應(yīng)鏈環(huán)節(jié)同樣存在風(fēng)險(xiǎn),某邊緣服務(wù)器廠商因使用被篡改的固件,導(dǎo)致交付的200臺(tái)設(shè)備均預(yù)置后門(mén)。邊緣計(jì)算正在成為5G網(wǎng)絡(luò)的重要支撐技...
邊緣計(jì)算的部署成本遠(yuǎn)不止硬件采購(gòu)那么簡(jiǎn)單。根據(jù)行業(yè)調(diào)研,企業(yè)需承擔(dān)四大重要成本:硬件成本:邊緣節(jié)點(diǎn)需部署專(zhuān)業(yè)用服務(wù)器、智能網(wǎng)關(guān)等設(shè)備,單個(gè)節(jié)點(diǎn)成本數(shù)萬(wàn)元至數(shù)十萬(wàn)元不等。例如,某汽車(chē)工廠部署200個(gè)邊緣節(jié)點(diǎn),硬件總投入超千萬(wàn)元。網(wǎng)絡(luò)成本:5G專(zhuān)網(wǎng)或工業(yè)以太網(wǎng)建設(shè)成本高昂,且需持續(xù)支付帶寬租賃費(fèi)用。某物流園區(qū)測(cè)試顯示,5G網(wǎng)絡(luò)年費(fèi)用占邊緣計(jì)算總成本的30%。運(yùn)維成本:邊緣節(jié)點(diǎn)分散部署,需專(zhuān)業(yè)團(tuán)隊(duì)進(jìn)行設(shè)備巡檢、故障修復(fù)和軟件更新,人力成本較集中式數(shù)據(jù)中心高40%。能源成本:邊緣設(shè)備24小時(shí)運(yùn)行,電力消耗和冷卻系統(tǒng)費(fèi)用占運(yùn)營(yíng)成本的25%以上。邊緣計(jì)算設(shè)備的部署位置對(duì)于其性能至關(guān)重要。廣東超市邊緣計(jì)算一...
在人工智能(AI)技術(shù)向千行百業(yè)滲透的浪潮中,邊緣計(jì)算正從“配角”躍升為“重要引擎”。據(jù)IDC預(yù)測(cè),到2026年,全球邊緣計(jì)算市場(chǎng)規(guī)模將突破1200億美元,其中與AI的深度融合占比將超過(guò)60%。這一趨勢(shì)背后,是行業(yè)對(duì)“低延遲、高隱私、低成本”的迫切需求。作為國(guó)家高新企業(yè),深圳市倍聯(lián)德實(shí)業(yè)有限公司憑借其在邊緣計(jì)算與AI領(lǐng)域的創(chuàng)新實(shí)踐,率先構(gòu)建了一套“云端訓(xùn)練+邊緣推理”的分工策略,為智能制造、智慧醫(yī)療、自動(dòng)駕駛等領(lǐng)域提供了可復(fù)制的解決方案。邊緣計(jì)算為應(yīng)急響應(yīng)和災(zāi)難管理提供了實(shí)時(shí)的數(shù)據(jù)處理能力。主流邊緣計(jì)算設(shè)備邊緣計(jì)算將數(shù)據(jù)處理下沉至設(shè)備端,導(dǎo)致敏感數(shù)據(jù)(如工業(yè)控制指令、用戶(hù)健康信息)在邊緣節(jié)點(diǎn)集...
針對(duì)中小企業(yè)的算力需求,倍聯(lián)德推出全球初款24重要Atom架構(gòu)緊湊型邊緣服務(wù)器,其功耗只350W,卻可支持8路1080P視頻流實(shí)時(shí)分析。在浙江某紡織企業(yè)的質(zhì)量檢測(cè)場(chǎng)景中,該設(shè)備替代傳統(tǒng)工控機(jī)后,使單條生產(chǎn)線(xiàn)部署成本從15萬(wàn)元降至3.8萬(wàn)元,同時(shí)將布匹瑕疵檢出率從82%提升至98%?!斑吘売?jì)算不是‘高級(jí)玩具’,必須讓中小企業(yè)用得起?!北堵?lián)德產(chǎn)品總監(jiān)張華強(qiáng)調(diào)。其HID系列醫(yī)療平板更通過(guò)UL60601-1醫(yī)療認(rèn)證,在基層醫(yī)院實(shí)現(xiàn)心電圖、超聲影像的本地化AI分析,使單臺(tái)設(shè)備診斷效率相當(dāng)于3名主治醫(yī)師,而采購(gòu)成本只為進(jìn)口設(shè)備的1/5。邊緣計(jì)算的發(fā)展需要跨行業(yè)的合作與協(xié)同。高性能邊緣計(jì)算生態(tài)自動(dòng)駕駛系統(tǒng)依...
隨著AI大模型向邊緣端遷移,倍聯(lián)德正布局兩大方向:邊緣大模型:研發(fā)千億參數(shù)模型的輕量化版本,支持在邊緣設(shè)備上運(yùn)行多模態(tài)推理任務(wù)。6G-邊緣融合:與華為合作研發(fā)太赫茲通信模塊,結(jié)合TSN時(shí)間敏感網(wǎng)絡(luò),為L(zhǎng)5級(jí)自動(dòng)駕駛提供10Gbps級(jí)實(shí)時(shí)數(shù)據(jù)傳輸能力?!斑吘売?jì)算不是云端的替代者,而是AI能力的延伸?!北堵?lián)德CTO李明表示,“通過(guò)精確的分工策略,我們正在讓每一輛自動(dòng)駕駛汽車(chē)、每一臺(tái)工業(yè)機(jī)器人都擁有一個(gè)‘本地化超級(jí)大腦’?!痹谶@場(chǎng)智能變革中,邊緣計(jì)算與AI的深度融合,正重新定義技術(shù)與產(chǎn)業(yè)的邊界。電信運(yùn)營(yíng)商通過(guò)邊緣計(jì)算拓展B2B業(yè)務(wù),為行業(yè)客戶(hù)提供定制化解決方案。園區(qū)邊緣計(jì)算使用方向倍聯(lián)德積極參與邊緣...
當(dāng)前,云廠商正加速布局邊緣服務(wù):AWS Wavelength將計(jì)算資源嵌入5G基站,Azure Edge Zones實(shí)現(xiàn)數(shù)據(jù)中心與邊緣節(jié)點(diǎn)的無(wú)縫對(duì)接,華為FusionEdge平臺(tái)支持邊云應(yīng)用統(tǒng)一開(kāi)發(fā)。隨著AI大模型向邊緣端遷移,未來(lái)三年,邊緣設(shè)備的推理能力將提升10倍,而云端將聚焦于千億參數(shù)模型的訓(xùn)練與優(yōu)化。在這場(chǎng)計(jì)算范式的變革中,邊緣計(jì)算與云計(jì)算如同數(shù)字世界的“左右腦”——前者以毫秒級(jí)響應(yīng)守護(hù)生命安全與生產(chǎn)效率,后者以海量算力探索宇宙奧秘與人類(lèi)未來(lái)。兩者的深度融合,正推動(dòng)各行各業(yè)邁向“實(shí)時(shí)智能”的新紀(jì)元。邊緣計(jì)算有助于減少數(shù)據(jù)中心的流量負(fù)載。無(wú)風(fēng)扇系統(tǒng)邊緣計(jì)算供應(yīng)商在數(shù)字化轉(zhuǎn)型浪潮中,邊緣計(jì)...
在自動(dòng)駕駛技術(shù)加速落地的進(jìn)程中,一場(chǎng)關(guān)于“數(shù)據(jù)傳輸效率”與“決策時(shí)效性”的博弈正成為行業(yè)重要挑戰(zhàn)。傳統(tǒng)云計(jì)算模式下,車(chē)輛傳感器產(chǎn)生的海量數(shù)據(jù)需上傳至云端處理,往返延遲常導(dǎo)致緊急制動(dòng)響應(yīng)滯后數(shù)百毫秒,而這一毫秒級(jí)差距在高速行駛場(chǎng)景中可能引發(fā)致命事故。在此背景下,邊緣計(jì)算技術(shù)通過(guò)“本地化智能”重構(gòu)數(shù)據(jù)處理范式,為自動(dòng)駕駛系統(tǒng)提供了低延遲、高可靠的實(shí)時(shí)決策支持。作為國(guó)家高新的技術(shù)企業(yè),深圳市倍聯(lián)德實(shí)業(yè)有限公司憑借其在邊緣計(jì)算領(lǐng)域的深厚積累,正成為推動(dòng)這一技術(shù)變革的關(guān)鍵力量。邊緣節(jié)點(diǎn)的重要功能包括數(shù)據(jù)預(yù)處理、緩存加速和輕量級(jí)分析,從而減輕云端負(fù)擔(dān)。廣東ARM邊緣計(jì)算云平臺(tái)傳統(tǒng)AI大模型訓(xùn)練依賴(lài)云端算力...
便攜式醫(yī)療設(shè)備通過(guò)邊緣計(jì)算實(shí)現(xiàn)本地生命體征分析,在斷網(wǎng)情況下仍能持續(xù)監(jiān)測(cè)患者心率、血氧等指標(biāo)。某三甲醫(yī)院的心電監(jiān)護(hù)儀采用邊緣架構(gòu)后,室顫識(shí)別延遲從15秒縮短至0.5秒,為急救爭(zhēng)取了黃金時(shí)間。此外,手術(shù)機(jī)器人的邊緣計(jì)算模塊可實(shí)時(shí)處理4K影像數(shù)據(jù),確保主刀醫(yī)生操作的精確性。隨著5G與AI技術(shù)的融合,邊緣計(jì)算與云計(jì)算正從“替代競(jìng)爭(zhēng)”轉(zhuǎn)向“協(xié)同共生”。在智能電網(wǎng)場(chǎng)景中,邊緣節(jié)點(diǎn)實(shí)時(shí)監(jiān)測(cè)變壓器溫度,云端平臺(tái)分析歷史數(shù)據(jù)預(yù)測(cè)設(shè)備壽命;在智慧農(nóng)業(yè)領(lǐng)域,田間傳感器通過(guò)邊緣計(jì)算控制灌溉系統(tǒng),云端AI模型優(yōu)化種植方案。據(jù)IDC預(yù)測(cè),到2026年,80%的企業(yè)將采用邊云協(xié)同架構(gòu),其數(shù)據(jù)處理效率較單一模式提升3倍以上...
邊緣計(jì)算在自動(dòng)駕駛場(chǎng)景中如何解決數(shù)據(jù)傳輸與決策時(shí)效性矛盾?隨著AI大模型向邊緣端遷移,倍聯(lián)德正布局兩大方向:邊緣大模型:將千億參數(shù)模型壓縮至邊緣設(shè)備可運(yùn)行范圍,實(shí)現(xiàn)本地化智能決策。6G-邊緣融合:研發(fā)太赫茲通信模塊,支持10Gbps級(jí)實(shí)時(shí)數(shù)據(jù)傳輸,為L(zhǎng)5級(jí)自動(dòng)駕駛提供技術(shù)儲(chǔ)備?!斑吘売?jì)算的目標(biāo),是讓企業(yè)以云計(jì)算的成本享受超實(shí)時(shí)的性能。”倍聯(lián)德CEO王偉表示。在這場(chǎng)成本與性能的博弈中,倍聯(lián)德正以技術(shù)創(chuàng)新重新定義游戲規(guī)則,推動(dòng)邊緣計(jì)算從“貴族技術(shù)”走向普惠化應(yīng)用。邊緣計(jì)算為農(nóng)業(yè)智能化提供了有力的技術(shù)支持。廣東社區(qū)邊緣計(jì)算視頻分析針對(duì)中小企業(yè)的算力需求,倍聯(lián)德推出全球初款24重要Atom架構(gòu)緊湊型邊...
面對(duì)企業(yè)跨園區(qū)、跨地域的算力調(diào)度需求,倍聯(lián)德創(chuàng)新提出“中心云-邊緣云-終端設(shè)備”三級(jí)協(xié)同架構(gòu)。其自主研發(fā)的MEC編排器可動(dòng)態(tài)分配算力資源:在深圳某三甲醫(yī)院的遠(yuǎn)程手術(shù)場(chǎng)景中,系統(tǒng)自動(dòng)將4K影像渲染任務(wù)分配至院內(nèi)邊緣節(jié)點(diǎn),而AI病理分析模型則運(yùn)行于云端,使單臺(tái)手術(shù)數(shù)據(jù)傳輸量減少92%,同時(shí)保障99.99%的可靠性。這一架構(gòu)的突破性在于“算力隨需而動(dòng)”。在東莞某電子廠的柔性生產(chǎn)線(xiàn)改造項(xiàng)目中,倍聯(lián)德方案支持200個(gè)邊緣節(jié)點(diǎn)根據(jù)訂單類(lèi)型自動(dòng)切換算法模型,使產(chǎn)線(xiàn)換型時(shí)間從4小時(shí)縮短至15分鐘,設(shè)備綜合效率(OEE)提升18%。邊緣計(jì)算正在改變我們對(duì)實(shí)時(shí)通信系統(tǒng)的理解。廣東緊湊型系統(tǒng)邊緣計(jì)算生態(tài)傳統(tǒng)AI大模...
倍聯(lián)德與華為合作研發(fā)的5G邊緣計(jì)算網(wǎng)關(guān),支持時(shí)間敏感網(wǎng)絡(luò)(TSN)協(xié)議:確定性傳輸:在工業(yè)場(chǎng)景中實(shí)現(xiàn)微秒級(jí)時(shí)鐘同步,確保控制指令的零丟包傳輸。帶寬優(yōu)化:通過(guò)數(shù)據(jù)特征提取技術(shù),將原始數(shù)據(jù)量壓縮90%以上,某光伏電站項(xiàng)目年節(jié)省帶寬成本超千萬(wàn)元。多網(wǎng)協(xié)同:支持5G/Wi-Fi 6/有線(xiàn)網(wǎng)絡(luò)自動(dòng)切換,在弱網(wǎng)環(huán)境下仍能保障關(guān)鍵任務(wù)連續(xù)性。倍聯(lián)德編排平臺(tái)實(shí)現(xiàn)邊緣設(shè)備的全生命周期管理:遠(yuǎn)程更新:支持批量推送安全補(bǔ)丁與算法模型,單次更新耗時(shí)從2小時(shí)縮短至5分鐘。安全防護(hù):集成國(guó)密SM2/SM4加密算法與區(qū)塊鏈存證,通過(guò)等保2.0三級(jí)認(rèn)證,數(shù)據(jù)泄露風(fēng)險(xiǎn)降低90%。智能巡檢:通過(guò)數(shù)字孿生技術(shù)模擬設(shè)備運(yùn)行狀態(tài),減少...
在人工智能(AI)技術(shù)向千行百業(yè)滲透的浪潮中,邊緣計(jì)算正從“配角”躍升為“重要引擎”。據(jù)IDC預(yù)測(cè),到2026年,全球邊緣計(jì)算市場(chǎng)規(guī)模將突破1200億美元,其中與AI的深度融合占比將超過(guò)60%。這一趨勢(shì)背后,是行業(yè)對(duì)“低延遲、高隱私、低成本”的迫切需求。作為國(guó)家高新企業(yè),深圳市倍聯(lián)德實(shí)業(yè)有限公司憑借其在邊緣計(jì)算與AI領(lǐng)域的創(chuàng)新實(shí)踐,率先構(gòu)建了一套“云端訓(xùn)練+邊緣推理”的分工策略,為智能制造、智慧醫(yī)療、自動(dòng)駕駛等領(lǐng)域提供了可復(fù)制的解決方案。邊緣計(jì)算正在成為未來(lái)工業(yè)互聯(lián)網(wǎng)的重要趨勢(shì)。廣東機(jī)架式系統(tǒng)邊緣計(jì)算報(bào)價(jià)倍聯(lián)德技術(shù)已深度融入自動(dòng)駕駛?cè)湕l:車(chē)路協(xié)同:在無(wú)錫國(guó)家的車(chē)聯(lián)網(wǎng)先導(dǎo)區(qū),倍聯(lián)德部署的路側(cè)邊...
邊緣計(jì)算資源有限,攻擊者利用僵尸網(wǎng)絡(luò)發(fā)起低頻高并發(fā)攻擊,可輕易耗盡邊緣節(jié)點(diǎn)算力。2024年某智能電網(wǎng)試點(diǎn)項(xiàng)目中,攻擊者通過(guò)偽造海量電力負(fù)荷數(shù)據(jù)請(qǐng)求,導(dǎo)致區(qū)域邊緣控制中心癱瘓2小時(shí),影響10萬(wàn)戶(hù)供電。更隱蔽的攻擊方式是針對(duì)邊緣AI模型的“數(shù)據(jù)投毒”,通過(guò)篡改訓(xùn)練數(shù)據(jù)使模型誤判,某自動(dòng)駕駛測(cè)試場(chǎng)曾因此發(fā)生碰撞事故。邊緣設(shè)備部署環(huán)境復(fù)雜,從工廠車(chē)間到野外基站,物理防護(hù)措施薄弱。某油田的邊緣數(shù)據(jù)采集終端因未安裝防拆報(bào)警裝置,被不法分子直接拔除硬盤(pán),導(dǎo)致地質(zhì)勘探數(shù)據(jù)長(zhǎng)久丟失。供應(yīng)鏈環(huán)節(jié)同樣存在風(fēng)險(xiǎn),某邊緣服務(wù)器廠商因使用被篡改的固件,導(dǎo)致交付的200臺(tái)設(shè)備均預(yù)置后門(mén)。邊緣計(jì)算框架通常融合了物聯(lián)網(wǎng)、AI和...
作為行業(yè)先行者,倍聯(lián)德構(gòu)建了覆蓋硬件、算法、系統(tǒng)的全棧解決方案:異構(gòu)計(jì)算架構(gòu):其E500系列邊緣服務(wù)器采用Intel?Xeon?D系列處理器與NVIDIA Jetson AGX Orin GPU的混合架構(gòu),支持16路4K視頻實(shí)時(shí)分析,算力密度較傳統(tǒng)方案提升3倍。在蘇州工業(yè)園區(qū)自動(dòng)駕駛測(cè)試場(chǎng),該設(shè)備可同時(shí)處理200路攝像頭數(shù)據(jù),目標(biāo)檢測(cè)準(zhǔn)確率達(dá)99.2%。聯(lián)邦學(xué)習(xí)框架:針對(duì)數(shù)據(jù)隱私保護(hù)需求,倍聯(lián)德開(kāi)發(fā)了分布式聯(lián)邦學(xué)習(xí)平臺(tái)。在廣州智能網(wǎng)聯(lián)汽車(chē)示范區(qū),100輛測(cè)試車(chē)通過(guò)邊緣節(jié)點(diǎn)共享模型參數(shù),在保護(hù)原始數(shù)據(jù)的前提下,將雨霧天氣下的行人識(shí)別準(zhǔn)確率從78%提升至92%。動(dòng)態(tài)資源調(diào)度:基于強(qiáng)化學(xué)習(xí)的資源分配...
在智能安防場(chǎng)景中,倍聯(lián)德開(kāi)發(fā)的邊緣攝像頭采用條件計(jì)算技術(shù),只在檢測(cè)到異常行為時(shí)啟動(dòng)完整的人臉識(shí)別模型。測(cè)試數(shù)據(jù)顯示,該方案使設(shè)備功耗降低70%,同時(shí)保持99.2%的識(shí)別準(zhǔn)確率。倍聯(lián)德的分工策略已在多個(gè)領(lǐng)域?qū)崿F(xiàn)規(guī)?;瘧?yīng)用:智能制造:為富士康打造的“云+邊+端”協(xié)同平臺(tái),通過(guò)邊緣設(shè)備實(shí)時(shí)處理200路攝像頭數(shù)據(jù),結(jié)合云端全局優(yōu)化,使產(chǎn)線(xiàn)綜合效率(OEE)提升18%,年節(jié)省成本超2000萬(wàn)元。智慧醫(yī)療:HID系列醫(yī)療平板集成邊緣AI芯片,可在本地完成心電圖異常檢測(cè),結(jié)果上傳云端前自動(dòng)消除敏感,使基層醫(yī)院診斷準(zhǔn)確率提升至三甲醫(yī)院水平的92%。自動(dòng)駕駛:與某車(chē)企合作的5G無(wú)人公交項(xiàng)目,通過(guò)路側(cè)邊緣計(jì)算節(jié)點(diǎn)...
邊緣計(jì)算資源有限,攻擊者利用僵尸網(wǎng)絡(luò)發(fā)起低頻高并發(fā)攻擊,可輕易耗盡邊緣節(jié)點(diǎn)算力。2024年某智能電網(wǎng)試點(diǎn)項(xiàng)目中,攻擊者通過(guò)偽造海量電力負(fù)荷數(shù)據(jù)請(qǐng)求,導(dǎo)致區(qū)域邊緣控制中心癱瘓2小時(shí),影響10萬(wàn)戶(hù)供電。更隱蔽的攻擊方式是針對(duì)邊緣AI模型的“數(shù)據(jù)投毒”,通過(guò)篡改訓(xùn)練數(shù)據(jù)使模型誤判,某自動(dòng)駕駛測(cè)試場(chǎng)曾因此發(fā)生碰撞事故。邊緣設(shè)備部署環(huán)境復(fù)雜,從工廠車(chē)間到野外基站,物理防護(hù)措施薄弱。某油田的邊緣數(shù)據(jù)采集終端因未安裝防拆報(bào)警裝置,被不法分子直接拔除硬盤(pán),導(dǎo)致地質(zhì)勘探數(shù)據(jù)長(zhǎng)久丟失。供應(yīng)鏈環(huán)節(jié)同樣存在風(fēng)險(xiǎn),某邊緣服務(wù)器廠商因使用被篡改的固件,導(dǎo)致交付的200臺(tái)設(shè)備均預(yù)置后門(mén)。金融行業(yè)利用邊緣計(jì)算分析交易數(shù)據(jù),實(shí)...
傳統(tǒng)AI大模型訓(xùn)練依賴(lài)云端算力,但高昂的帶寬成本和隱私泄露風(fēng)險(xiǎn)成為規(guī)?;瘧?yīng)用的瓶頸。倍聯(lián)德通過(guò)“聯(lián)邦學(xué)習(xí)+遷移學(xué)習(xí)”技術(shù),重新定義了云端訓(xùn)練的邊界:在醫(yī)療領(lǐng)域,倍聯(lián)德為某三甲醫(yī)院部署的聯(lián)邦學(xué)習(xí)平臺(tái),支持10家分院在本地訓(xùn)練醫(yī)療影像分析模型,只共享模型參數(shù)而非原始數(shù)據(jù)。這一方案使肺病早期篩查準(zhǔn)確率提升至96%,同時(shí)滿(mǎn)足《個(gè)人信息保護(hù)法》對(duì)醫(yī)療數(shù)據(jù)隱私的要求。技術(shù)實(shí)現(xiàn)上,平臺(tái)采用差分隱私技術(shù)對(duì)參數(shù)進(jìn)行加密,并通過(guò)安全聚合算法確保云端無(wú)法反推原始數(shù)據(jù)。邊緣計(jì)算為車(chē)聯(lián)網(wǎng)提供了高效的數(shù)據(jù)處理能力。工業(yè)自動(dòng)化邊緣計(jì)算供應(yīng)商在工業(yè)互聯(lián)網(wǎng)、智能交通、智慧醫(yī)療等場(chǎng)景中,數(shù)據(jù)處理的實(shí)時(shí)性正成為決定行業(yè)競(jìng)爭(zhēng)力的重要...
數(shù)據(jù)隱私泄露風(fēng)險(xiǎn)與合規(guī)要求,正成為企業(yè)數(shù)字化轉(zhuǎn)型的重要挑戰(zhàn)。倍聯(lián)德創(chuàng)新采用“聯(lián)邦學(xué)習(xí)+邊緣加密”技術(shù),在醫(yī)療、金融等強(qiáng)監(jiān)管領(lǐng)域構(gòu)建起數(shù)據(jù)安全防線(xiàn)。在醫(yī)療行業(yè),其HID系列醫(yī)療平板通過(guò)UL60601-1醫(yī)療認(rèn)證,可在本地完成心電圖、超聲影像的AI分析,無(wú)需上傳原始數(shù)據(jù)至云端。在廣州某三甲醫(yī)院的實(shí)踐中,該設(shè)備使肺病早期篩查準(zhǔn)確率提升至96%,同時(shí)滿(mǎn)足《個(gè)人信息保護(hù)法》對(duì)醫(yī)療數(shù)據(jù)隱私的要求。更值得關(guān)注的是,倍聯(lián)德開(kāi)發(fā)的DeepSurgeon AI平臺(tái)支持多醫(yī)院聯(lián)合訓(xùn)練模型時(shí)的參數(shù)隔離,使跨機(jī)構(gòu)協(xié)作中的數(shù)據(jù)泄露風(fēng)險(xiǎn)趨近于零。在金融領(lǐng)域,其邊緣計(jì)算節(jié)點(diǎn)采用國(guó)密SM4算法對(duì)交易數(shù)據(jù)進(jìn)行實(shí)時(shí)加密,并支持動(dòng)態(tài)...
隨著AI大模型向邊緣端遷移,倍聯(lián)德正布局兩大方向:邊緣大模型:研發(fā)千億參數(shù)模型的輕量化版本,支持在邊緣設(shè)備上運(yùn)行多模態(tài)推理任務(wù)。6G-邊緣融合:與華為合作研發(fā)太赫茲通信模塊,結(jié)合TSN時(shí)間敏感網(wǎng)絡(luò),為L(zhǎng)5級(jí)自動(dòng)駕駛提供10Gbps級(jí)實(shí)時(shí)數(shù)據(jù)傳輸能力?!斑吘売?jì)算不是云端的替代者,而是AI能力的延伸?!北堵?lián)德CTO李明表示,“通過(guò)精確的分工策略,我們正在讓每一輛自動(dòng)駕駛汽車(chē)、每一臺(tái)工業(yè)機(jī)器人都擁有一個(gè)‘本地化超級(jí)大腦’?!痹谶@場(chǎng)智能變革中,邊緣計(jì)算與AI的深度融合,正重新定義技術(shù)與產(chǎn)業(yè)的邊界。智慧城市通過(guò)邊緣計(jì)算優(yōu)化交通流量,動(dòng)態(tài)調(diào)整信號(hào)燈配時(shí)以緩解擁堵問(wèn)題。廣東自動(dòng)駕駛邊緣計(jì)算報(bào)價(jià)自動(dòng)駕駛系統(tǒng)依...
倍聯(lián)德E500系列機(jī)架式邊緣服務(wù)器,針對(duì)工業(yè)場(chǎng)景深度優(yōu)化:異構(gòu)計(jì)算架構(gòu):集成Intel?Xeon?D系列處理器與NVIDIA Jetson AGX Orin GPU,支持16路4K視頻實(shí)時(shí)分析,算力密度較通用方案提升3倍。低功耗設(shè)計(jì):采用液冷技術(shù),單機(jī)柜功率密度提升至50kW,能耗降低40%,年節(jié)省電費(fèi)超10萬(wàn)元。模塊化擴(kuò)展:支持PCI-E 4.0高速擴(kuò)展,企業(yè)可根據(jù)需求靈活配置存儲(chǔ)與算力,避免過(guò)度投資。在蘇州工業(yè)園區(qū),倍聯(lián)德為某車(chē)企部署的邊緣質(zhì)檢系統(tǒng),通過(guò)硬件定制化將單節(jié)點(diǎn)成本從15萬(wàn)元降至8萬(wàn)元,同時(shí)將圖像處理幀率提升至60fps。邊緣計(jì)算正在推動(dòng)能源行業(yè)的數(shù)字化轉(zhuǎn)型。高性能邊緣計(jì)算盒子便...
隨著AI大模型向邊緣端遷移,安全防護(hù)將向“主動(dòng)免疫”方向演進(jìn)。倍聯(lián)德計(jì)劃在2025年下半年推出搭載安全大模型的邊緣服務(wù)器,通過(guò)自然語(yǔ)言處理技術(shù)實(shí)現(xiàn)安全策略的自動(dòng)生成與優(yōu)化。同時(shí),公司正探索量子加密技術(shù)在邊緣計(jì)算中的應(yīng)用,為工業(yè)互聯(lián)網(wǎng)構(gòu)建“不可解開(kāi)”的通信通道。在邊緣計(jì)算重塑產(chǎn)業(yè)格局的現(xiàn)在,安全已不再是技術(shù)選項(xiàng),而是企業(yè)數(shù)字化轉(zhuǎn)型的“生命線(xiàn)”。倍聯(lián)德通過(guò)持續(xù)創(chuàng)新,正為工業(yè)物聯(lián)網(wǎng)構(gòu)建起“銅墻鐵壁”,助力中國(guó)制造向“智造”安全躍遷。邊緣計(jì)算使得物聯(lián)網(wǎng)設(shè)備可以更加高效地協(xié)同工作。廣東邊緣計(jì)算盒子倍聯(lián)德E500系列機(jī)架式邊緣服務(wù)器,針對(duì)工業(yè)場(chǎng)景深度優(yōu)化:異構(gòu)計(jì)算架構(gòu):集成Intel?Xeon?D系列處理...
5G網(wǎng)絡(luò)空口時(shí)延可低至1毫秒,結(jié)合邊緣計(jì)算的本地化部署,端到端延遲可壓縮至10毫秒以?xún)?nèi)。這一特性在工業(yè)場(chǎng)景中價(jià)值明顯:倍聯(lián)德為某汽車(chē)零部件廠商部署的5G邊緣質(zhì)檢系統(tǒng)中,振動(dòng)傳感器數(shù)據(jù)在邊緣節(jié)點(diǎn)完成實(shí)時(shí)分析,故障預(yù)警延遲從傳統(tǒng)模式的2.3秒降至0.15秒,設(shè)備非計(jì)劃停機(jī)時(shí)間減少65%。在自動(dòng)駕駛領(lǐng)域,倍聯(lián)德與車(chē)企合作的5G無(wú)人公交項(xiàng)目,通過(guò)邊緣計(jì)算節(jié)點(diǎn)實(shí)時(shí)處理路側(cè)攝像頭數(shù)據(jù),結(jié)合5G低時(shí)延特性,使車(chē)輛緊急制動(dòng)距離縮短40%,安全性提升3倍。5G網(wǎng)絡(luò)峰值速率達(dá)10Gbps,可支持每平方公里百萬(wàn)級(jí)設(shè)備連接。這一特性解決了邊緣計(jì)算的數(shù)據(jù)傳輸瓶頸:在某光伏電站項(xiàng)目中,倍聯(lián)德部署的5G邊緣控制器通過(guò)本地化...
倍聯(lián)德突破傳統(tǒng)MEC廠商“設(shè)備+平臺(tái)”的單一模式,聚焦垂直行業(yè)的重要痛點(diǎn),打造“硬件+算法+服務(wù)”的全棧解決方案。在工業(yè)互聯(lián)網(wǎng)領(lǐng)域,其“云+邊+端”協(xié)同架構(gòu)已應(yīng)用于200余家制造企業(yè)。通過(guò)SERVER平臺(tái)實(shí)現(xiàn)設(shè)備管理、算法管理、數(shù)據(jù)管理的統(tǒng)一調(diào)度,結(jié)合邊緣節(jié)點(diǎn)的實(shí)時(shí)分析能力,使某汽車(chē)零部件廠商的產(chǎn)線(xiàn)換型時(shí)間從4小時(shí)縮短至15分鐘,設(shè)備故障預(yù)測(cè)準(zhǔn)確率達(dá)92%。在智慧城市建設(shè)中,倍聯(lián)德與深圳某區(qū)相關(guān)部門(mén)合作的智能交通項(xiàng)目,通過(guò)部署5000個(gè)路側(cè)邊緣節(jié)點(diǎn),實(shí)時(shí)分析交通流量、事故位置等數(shù)據(jù),使高峰時(shí)段擁堵指數(shù)下降25%,應(yīng)急車(chē)輛通行時(shí)間縮短40%。該方案還創(chuàng)新引入數(shù)字孿生技術(shù),在邊緣端構(gòu)建城市交通的實(shí)...
面對(duì)企業(yè)跨園區(qū)、跨地域的算力調(diào)度需求,倍聯(lián)德創(chuàng)新提出“中心云-邊緣云-終端設(shè)備”三級(jí)協(xié)同架構(gòu)。其自主研發(fā)的MEC編排器可動(dòng)態(tài)分配算力資源:在深圳某三甲醫(yī)院的遠(yuǎn)程手術(shù)場(chǎng)景中,系統(tǒng)自動(dòng)將4K影像渲染任務(wù)分配至院內(nèi)邊緣節(jié)點(diǎn),而AI病理分析模型則運(yùn)行于云端,使單臺(tái)手術(shù)數(shù)據(jù)傳輸量減少92%,同時(shí)保障99.99%的可靠性。這一架構(gòu)的突破性在于“算力隨需而動(dòng)”。在東莞某電子廠的柔性生產(chǎn)線(xiàn)改造項(xiàng)目中,倍聯(lián)德方案支持200個(gè)邊緣節(jié)點(diǎn)根據(jù)訂單類(lèi)型自動(dòng)切換算法模型,使產(chǎn)線(xiàn)換型時(shí)間從4小時(shí)縮短至15分鐘,設(shè)備綜合效率(OEE)提升18%。邊緣計(jì)算通過(guò)將數(shù)據(jù)處理能力下沉至網(wǎng)絡(luò)邊緣,明顯降低了數(shù)據(jù)傳輸?shù)难舆t和帶寬消耗。自...
作為行業(yè)先行者,倍聯(lián)德構(gòu)建了覆蓋硬件、算法、系統(tǒng)的全棧解決方案:異構(gòu)計(jì)算架構(gòu):其E500系列邊緣服務(wù)器采用Intel?Xeon?D系列處理器與NVIDIA Jetson AGX Orin GPU的混合架構(gòu),支持16路4K視頻實(shí)時(shí)分析,算力密度較傳統(tǒng)方案提升3倍。在蘇州工業(yè)園區(qū)自動(dòng)駕駛測(cè)試場(chǎng),該設(shè)備可同時(shí)處理200路攝像頭數(shù)據(jù),目標(biāo)檢測(cè)準(zhǔn)確率達(dá)99.2%。聯(lián)邦學(xué)習(xí)框架:針對(duì)數(shù)據(jù)隱私保護(hù)需求,倍聯(lián)德開(kāi)發(fā)了分布式聯(lián)邦學(xué)習(xí)平臺(tái)。在廣州智能網(wǎng)聯(lián)汽車(chē)示范區(qū),100輛測(cè)試車(chē)通過(guò)邊緣節(jié)點(diǎn)共享模型參數(shù),在保護(hù)原始數(shù)據(jù)的前提下,將雨霧天氣下的行人識(shí)別準(zhǔn)確率從78%提升至92%。動(dòng)態(tài)資源調(diào)度:基于強(qiáng)化學(xué)習(xí)的資源分配...
倍聯(lián)德推出的E500系列機(jī)架式邊緣計(jì)算服務(wù)器,專(zhuān)為5G場(chǎng)景設(shè)計(jì):低時(shí)延架構(gòu):采用Intel?Xeon?D系列處理器,支持PCI-E 4.0高速擴(kuò)展,數(shù)據(jù)吞吐量提升50%;高帶寬適配:內(nèi)置5G雙模通信模塊,支持SA/NSA組網(wǎng),實(shí)現(xiàn)邊緣節(jié)點(diǎn)與5G基站的直連;環(huán)境適應(yīng)性:通過(guò)IP67防護(hù)等級(jí)認(rèn)證,可在-40℃至85℃極端溫度下穩(wěn)定運(yùn)行,滿(mǎn)足野外、工廠等復(fù)雜環(huán)境需求。在某鋼鐵企業(yè)的高爐監(jiān)測(cè)項(xiàng)目中,E500系列邊緣服務(wù)器通過(guò)5G網(wǎng)絡(luò)實(shí)時(shí)傳輸高溫?cái)z像頭數(shù)據(jù),結(jié)合AI算法識(shí)別爐壁裂紋,檢測(cè)精度達(dá)0.1毫米,較傳統(tǒng)人工巡檢效率提升20倍。邊緣節(jié)點(diǎn)的異構(gòu)性導(dǎo)致管理復(fù)雜度高,需通過(guò)統(tǒng)一平臺(tái)實(shí)現(xiàn)標(biāo)準(zhǔn)化運(yùn)維。自動(dòng)駕...
隨著AI大模型向邊緣端遷移,倍聯(lián)德正布局兩大方向:邊緣大模型:研發(fā)千億參數(shù)模型的輕量化版本,支持在邊緣設(shè)備上運(yùn)行多模態(tài)推理任務(wù)。6G-邊緣融合:與華為合作研發(fā)太赫茲通信模塊,結(jié)合TSN時(shí)間敏感網(wǎng)絡(luò),為L(zhǎng)5級(jí)自動(dòng)駕駛提供10Gbps級(jí)實(shí)時(shí)數(shù)據(jù)傳輸能力?!斑吘売?jì)算不是云端的替代者,而是AI能力的延伸。”倍聯(lián)德CTO李明表示,“通過(guò)精確的分工策略,我們正在讓每一輛自動(dòng)駕駛汽車(chē)、每一臺(tái)工業(yè)機(jī)器人都擁有一個(gè)‘本地化超級(jí)大腦’?!痹谶@場(chǎng)智能變革中,邊緣計(jì)算與AI的深度融合,正重新定義技術(shù)與產(chǎn)業(yè)的邊界。邊緣計(jì)算的發(fā)展需要關(guān)注跨行業(yè)的技術(shù)標(biāo)準(zhǔn)和規(guī)范。廣東商場(chǎng)邊緣計(jì)算公司邊緣計(jì)算的部署成本遠(yuǎn)不止硬件采購(gòu)那么簡(jiǎn)單...
針對(duì)中小企業(yè)的算力需求,倍聯(lián)德推出全球初款24重要Atom架構(gòu)緊湊型邊緣服務(wù)器,其功耗只350W,卻可支持8路1080P視頻流實(shí)時(shí)分析。在浙江某紡織企業(yè)的質(zhì)量檢測(cè)場(chǎng)景中,該設(shè)備替代傳統(tǒng)工控機(jī)后,使單條生產(chǎn)線(xiàn)部署成本從15萬(wàn)元降至3.8萬(wàn)元,同時(shí)將布匹瑕疵檢出率從82%提升至98%?!斑吘売?jì)算不是‘高級(jí)玩具’,必須讓中小企業(yè)用得起?!北堵?lián)德產(chǎn)品總監(jiān)張華強(qiáng)調(diào)。其HID系列醫(yī)療平板更通過(guò)UL60601-1醫(yī)療認(rèn)證,在基層醫(yī)院實(shí)現(xiàn)心電圖、超聲影像的本地化AI分析,使單臺(tái)設(shè)備診斷效率相當(dāng)于3名主治醫(yī)師,而采購(gòu)成本只為進(jìn)口設(shè)備的1/5。邊緣計(jì)算使得邊緣設(shè)備可以自主處理數(shù)據(jù),減少了對(duì)云端的依賴(lài)。自動(dòng)駕駛邊緣...
在智能安防場(chǎng)景中,倍聯(lián)德開(kāi)發(fā)的邊緣攝像頭采用條件計(jì)算技術(shù),只在檢測(cè)到異常行為時(shí)啟動(dòng)完整的人臉識(shí)別模型。測(cè)試數(shù)據(jù)顯示,該方案使設(shè)備功耗降低70%,同時(shí)保持99.2%的識(shí)別準(zhǔn)確率。倍聯(lián)德的分工策略已在多個(gè)領(lǐng)域?qū)崿F(xiàn)規(guī)?;瘧?yīng)用:智能制造:為富士康打造的“云+邊+端”協(xié)同平臺(tái),通過(guò)邊緣設(shè)備實(shí)時(shí)處理200路攝像頭數(shù)據(jù),結(jié)合云端全局優(yōu)化,使產(chǎn)線(xiàn)綜合效率(OEE)提升18%,年節(jié)省成本超2000萬(wàn)元。智慧醫(yī)療:HID系列醫(yī)療平板集成邊緣AI芯片,可在本地完成心電圖異常檢測(cè),結(jié)果上傳云端前自動(dòng)消除敏感,使基層醫(yī)院診斷準(zhǔn)確率提升至三甲醫(yī)院水平的92%。自動(dòng)駕駛:與某車(chē)企合作的5G無(wú)人公交項(xiàng)目,通過(guò)路側(cè)邊緣計(jì)算節(jié)點(diǎn)...