廣東中翔新材料簽約德米薩智能ERP加強企業(yè)管理水平
碩鋮工業(yè)簽約德米薩智能進銷存系統(tǒng)提升企業(yè)管理水平
燊川實業(yè)簽約德米薩醫(yī)療器械管理軟件助力企業(yè)科學發(fā)展
森尼電梯簽約德米薩進銷存系統(tǒng)優(yōu)化企業(yè)資源管控
喜報!熱烈祝賀德米薩通過國際CMMI3認證
德米薩推出MES系統(tǒng)助力生產(chǎn)制造企業(yè)規(guī)范管理
德米薩醫(yī)療器械管理軟件通過上海市醫(yī)療器械行業(yè)協(xié)會評審認證
德米薩ERP助力客戶成功對接中石化易派客平臺
選擇進銷存軟件要考慮哪些因素
德米薩告訴您為什么說ERP系統(tǒng)培訓很重要?
在如今的作業(yè)中,無人機路面巡查替代傳統(tǒng)的人工巡查,展現(xiàn)出巨大的效率優(yōu)勢。像高速施工工地這樣的環(huán)境下,施工方為了保障施工安全,就需要對施工范圍進行嚴格管控,傳統(tǒng)的人工巡查效率低,受限于地形、時間等問題,容易出現(xiàn)盲點。相比人工,利用無人機進行AI識別則可以逐幀圖像監(jiān)測,即便是夜晚也能夠利用紅外傳感器進行數(shù)據(jù)收集,幾乎不會遺漏任何信息。而交通管理部門,則可以利用無人機快速到底事故地點進行疏導,緩解交通壓力。RV1126圖像處理板識別概率超過85%。貴州目標跟蹤好選擇
云臺的旋轉將直接改變攝像機的視野,因此對于云臺的控制必須謹慎且準確。錯誤的控制會使目標從視野中消失,導致跟蹤的失敗。此外,如果云臺的控制幅度過小,可能會達不到目標回到視野中心的目的,目標也同樣極易丟失。相反如果在對目標運動速度有可靠估計的前提下,提前將目標移到視野中目標運動方向的另一側,將為此后跟蹤目標贏得更多的時間,能夠提高跟蹤的成功率。所以為了使對于云臺的控制更為合理,應該對于不同的情況采取不同的控制策略。對于情況的劃分主要取決于目標的可靠性和速度的穩(wěn)定性。貴州目標跟蹤好選擇RK3399圖像處理板識別概率超過85%。
通常,遮擋可以分為三種情況:目標間遮擋、背景遮擋、自遮擋。對于目標之間的相互遮擋,可以選擇根據(jù)目標的位置和目標特征的先驗知識來處理這一問題。而對于場景結構的導致的部分遮擋此方法則難以判斷,因為難以辨認究竟是目標形狀發(fā)生變化還是發(fā)生遮擋。所以,處理遮擋問題的通用方法是用線性或非線性動態(tài)建模方法對運動目標進行,并在目標發(fā)生遮擋時,預測目標的可能位置,一直到目標重新出現(xiàn)時再修正它的位置??梢杂每柭鼮V波器來實現(xiàn)估計目標的位置,也可以用粒子濾波對目標做狀態(tài)估計。
長時間一直進行這樣的圖像標注工作,那無疑是枯燥而乏味的,手酸不說,更多的是精神上的折磨,進而效率大打折扣。但這又是算法提升的必要途徑,無法跳過,當項目緊急時,甚至需要多人加班加點趕進度。這樣的痛苦現(xiàn)狀急需改變!慧視光電的算法工程師為了提高這一的效率,開發(fā)了一個深度學習算法開發(fā)平臺SpeedDP。它的基本邏輯是基于一個手動標注一定量的數(shù)據(jù)集進行訓練,形成一個可用的預選模型(如果已有模型可以直接使用),然后訓練一定階段后,可以評估此模型的能力,如果能夠滿足使用就可以對相同目標的新數(shù)據(jù)集(未進行任何標注)進行AI自動化標注。這一過程的省去了大量需要對新數(shù)據(jù)集的手動拉框工作,同時也在不斷反哺此模型算法,幫助提升性能。工程師以RK3588核心板為基礎進行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。
實現(xiàn)這些功能的技術中,圖像處理基于AI圖像處理板這一傳感器。板卡具備快速圖像處理識別的硬件能力,植入相應的AI算法,無人機就相當于裝上了“智慧眼”,而且這個“智慧眼”居于高空,能夠在一個定點,俯瞰大范圍,實時監(jiān)控貨物的存放狀態(tài)。遠程控制技術基于網(wǎng)絡通信,通過和圖像處理板的結合,能夠實現(xiàn)低延時低帶寬的圖像傳輸處理。在實際落地應用中,可以采用成都慧視開發(fā)的高性能圖像處理板,其中RV1126系列的Viztra-LE026圖像處理板,就是無人機的完美搭子。這款圖像處理板具備2.0TOPS的算力,能夠根據(jù)無人機型號進行接口定制,整體尺寸在40mm×40mm×10mm左右(核心板+接口板),小巧的外形即便是小型無人機也能夠裝上。此外,板卡整體功耗在4W左右,不會過多增加無人機的負擔。Viztra-LE034圖像處理板識別概率超過85%。江西目標跟蹤設備
RK3399PRO圖像處理板識別概率超過85%。貴州目標跟蹤好選擇
視覺跟蹤技術是計算機視覺領域(人工智能分支)的一個重要課題,有著重要的研究意義;且在導彈制導、視頻監(jiān)控、機器人視覺導航、人機交互、以及醫(yī)療診斷等許多方面有著廣泛的應用前景。隨著研究人員不斷地深入研究,視覺目標跟蹤在近十幾年里有了突破性的進展,使得視覺跟蹤算法不只是局限于傳統(tǒng)的機器學習方法,更是結合了近些年人工智能熱潮—深度學習(神經(jīng)網(wǎng)絡)和相關濾波器等方法,并取得了魯棒(robust)、精確、穩(wěn)定的結果。貴州目標跟蹤好選擇