廣東中翔新材料簽約德米薩智能ERP加強(qiáng)企業(yè)管理水平
碩鋮工業(yè)簽約德米薩智能進(jìn)銷存系統(tǒng)提升企業(yè)管理水平
燊川實(shí)業(yè)簽約德米薩醫(yī)療器械管理軟件助力企業(yè)科學(xué)發(fā)展
森尼電梯簽約德米薩進(jìn)銷存系統(tǒng)優(yōu)化企業(yè)資源管控
喜報(bào)!熱烈祝賀德米薩通過國際CMMI3認(rèn)證
德米薩推出MES系統(tǒng)助力生產(chǎn)制造企業(yè)規(guī)范管理
德米薩醫(yī)療器械管理軟件通過上海市醫(yī)療器械行業(yè)協(xié)會(huì)評(píng)審認(rèn)證
德米薩ERP助力客戶成功對接中石化易派客平臺(tái)
選擇進(jìn)銷存軟件要考慮哪些因素
德米薩告訴您為什么說ERP系統(tǒng)培訓(xùn)很重要?
35. 分形幾何之科赫雪花生成 從正三角形開始,每邊三等分后中段替換為凸起的小三角。迭代三次后,周長變?yōu)樵L的(4/3)3≈2.37倍,面積收斂于初始的1.6倍。通過幾何畫板動(dòng)態(tài)演示,理解“無限周長包圍有限面積”的悖論。分形維度計(jì)算(log4/log3≈1.26)揭示復(fù)雜自然形態(tài)(海岸線、云層)的數(shù)學(xué)本質(zhì)。36. 黃金分割的生物學(xué)印證 向日葵種子排列遵循斐波那契數(shù)列(1,1,2,3,5,…),每新種子旋轉(zhuǎn)137.5°(黃金角≈360°×(1-φ),φ≈0.618)。此角度確保種子均勻分布且無重疊,數(shù)學(xué)模型驗(yàn)證優(yōu)等填充效率。類似規(guī)律見于松果鱗片與菠蘿紋理,體現(xiàn)數(shù)學(xué)法則在進(jìn)化中的普適性,啟發(fā)優(yōu)等包裝算法設(shè)計(jì)。錯(cuò)位排列問題揭示了數(shù)學(xué)與生活現(xiàn)象的深層關(guān)聯(lián)。永年區(qū)3年級(jí)數(shù)學(xué)思維導(dǎo)圖
學(xué)習(xí)奧數(shù)是一種很好的思維訓(xùn)練。奧數(shù)包含了發(fā)散思維、收斂思維、換元思維、逆向思維、邏輯思維、空間思維、等二十幾種思維方式。通過學(xué)習(xí)奧數(shù),可以幫助孩子開拓思路,提高思維能力,進(jìn)而有效提高分析問題和解決問題的能力。2學(xué)習(xí)奧數(shù)能提高邏輯思維能力。奧數(shù)是不同于且高于普通數(shù)學(xué)的數(shù)學(xué)內(nèi)容,求解奧數(shù)題,大多沒有現(xiàn)成的公式可套,但有規(guī)律可循,講究的是個(gè)“巧”字;不經(jīng)過分析判斷、邏輯推理乃至“抽絲剝繭”,是完成不了奧數(shù)題的。峰峰礦區(qū)六上數(shù)學(xué)思維導(dǎo)圖奧數(shù)思維課通過角色扮演模擬數(shù)學(xué)家探究過程。
孩子小學(xué)階段時(shí)間相對較多,能通過大量刷題,達(dá)到“熟能生巧”,“見多識(shí)廣”的目的。但初高中這種方法并不太適用了。出現(xiàn)以上問題,不是孩子不會(huì)舉一反三,而是沒有掌握解題的底層邏輯。一味的去追求速度,追求學(xué)了多少內(nèi)容,刷了多少題,不愿意多對題目進(jìn)行思考分析,就想套用模型解題,而不追求知識(shí)本質(zhì)。這樣的學(xué)習(xí)是低效的,不能遷移的,對后面中學(xué)學(xué)習(xí)也是毫無益處的。家長應(yīng)該不能只著眼當(dāng)下,更應(yīng)放大格局。學(xué)好奧數(shù)的方法—:“慢”在多年的奧數(shù)教學(xué)中,筆者發(fā)現(xiàn)**理想的奧數(shù)教學(xué)模式,應(yīng)當(dāng)是比較“慢”的。老師引導(dǎo)孩子去探索,學(xué)生自己嘗試,在不停的試錯(cuò)過程中,引導(dǎo)學(xué)生思考,給予學(xué)生評(píng)價(jià),讓學(xué)生總結(jié)出自己的分析題目,找到突破口的方法,增強(qiáng)學(xué)生的自信。為什么學(xué)奧數(shù)要“慢”?當(dāng)老師遇到一道陌生的題型,首先運(yùn)用的不是技巧,而是去分析、嘗試、驗(yàn)證。整個(gè)解題過程也并不是那么的流暢。實(shí)力強(qiáng)悍的老師亦是需要分析嘗試,更何況學(xué)生呢?老師還要預(yù)設(shè)如何引導(dǎo)學(xué)生這樣去分析,嘗試,做到哪種程度,才意識(shí)到方法不可取,又重新嘗試......找到正確的方法,再優(yōu)化方法。像這樣嘗試、分析、驗(yàn)證的能力是學(xué)***重要的品質(zhì),能夠終身受用。
29. 概率期望值的實(shí)際計(jì)算 抽獎(jiǎng)箱有5張券,2張有獎(jiǎng)。抽獎(jiǎng)不放回,求第二次抽中獎(jiǎng)的概率。解法一:頭一次中獎(jiǎng)概率2/5,則第二次中獎(jiǎng)概率1/4;頭一次未中獎(jiǎng)概率3/5,則第二次中獎(jiǎng)概率2/4??偲谕? (2/5×1/4)+(3/5×2/4)= 2/20+6/20= 2/5。解法二:對稱性知每人中獎(jiǎng)概率相同,均為2/5。延伸至排隊(duì)論中的公平性證明。30. 數(shù)獨(dú)的高級(jí)排除法技巧 在九宮格中,若某數(shù)字在行A和行B的可能位置均位于同一列,則可排除該列在其他行的可能性。例如數(shù)字5在第三宮只能填于第7-9列,若第8列在行1、行2已有5,則第三宮5必在第9列。結(jié)合X-Wing(矩形頂點(diǎn)排除)與Swordfish(三線排除)策略,提升復(fù)雜數(shù)獨(dú)解題效率,此類邏輯訓(xùn)練增強(qiáng)多線程推理能力。奧數(shù)爭議題常引發(fā)教育界對超前學(xué)習(xí)與思維透支的深度討論。
用數(shù)學(xué)思維思考問題,才是真正的“開竅”
數(shù)學(xué)——這可能是大多數(shù)人學(xué)生時(shí)代比較大的夢魘,無論是讀了三遍**終只能寫出一個(gè)“解:”的幾何大題,還是開始看還是數(shù)字寫著寫著就變成英語的代數(shù),都曾經(jīng)讓年少的我們薅掉好幾根頭發(fā),甚至有不少大學(xué)生在高考和考研選擇專業(yè)時(shí),都將用不用學(xué)數(shù)學(xué)當(dāng)成重要考慮因素。實(shí)際上,數(shù)學(xué)教育的作用,遠(yuǎn)遠(yuǎn)不止于應(yīng)試,數(shù)學(xué)是一門起源于現(xiàn)實(shí)應(yīng)用的學(xué)科,而一切數(shù)學(xué)理論的學(xué)習(xí)又都將歸于現(xiàn)實(shí)應(yīng)用。比如,早期的幾何學(xué)誕生于有關(guān)長度、角度、面積和體積的經(jīng)驗(yàn)性定律的收集,這些都是因?yàn)閷?shí)際地質(zhì)測量勘探、天文等需要而發(fā)展的。 用3D打印技術(shù)還原經(jīng)典奧數(shù)立體幾何題,增強(qiáng)空間理解直觀性。永年區(qū)3年級(jí)數(shù)學(xué)思維導(dǎo)圖
拓?fù)鋵W(xué)中的莫比烏斯環(huán)挑戰(zhàn)學(xué)生對空間的認(rèn)知。永年區(qū)3年級(jí)數(shù)學(xué)思維導(dǎo)圖
23. 復(fù)雜數(shù)列的遞推關(guān)系 定義數(shù)列a?=1,a???=2a?+3,求通項(xiàng)公式。通過構(gòu)造等比數(shù)列:a???+3=2(a?+3),得a?=2??1×4-3=2??1-3。變式:若遞推式含系數(shù)變量,如a???=na?+1,需使用遞推乘積法。此類訓(xùn)練強(qiáng)化差分方程與齊次化解題技巧,為金融復(fù)利計(jì)算提供數(shù)學(xué)模型基礎(chǔ)。24. 幾何中的等積變形原理 三角形頂點(diǎn)沿平行線移動(dòng)時(shí)面積不變。例如,梯形ABCD中,△ABC與△DBC同底等高,面積相等。應(yīng)用實(shí)例:求四邊形ABCD面積時(shí),可分割為兩個(gè)等積三角形或轉(zhuǎn)化為矩形。進(jìn)階問題:在坐標(biāo)系中,利用向量叉乘證明面積公式,理解行列式的幾何意義,此類方法在計(jì)算機(jī)圖形學(xué)中用于多邊形裁剪。永年區(qū)3年級(jí)數(shù)學(xué)思維導(dǎo)圖